von Andreas Niederhauser³), Gerhard Bart⁴) und Markus Neuenschwander⁵)

Institut für Organische Chemie der Universität Bern, 3000 Bern 9, Erlachstrasse 9a

(19. VII. 73)

Summary. Thioacetic acid and dithioacetic acid react with alkynederivatives of the type $(CH_3)_2N-C\equiv C-CO-R$ (1) in the same way as other carboxylic acids: The addition to dimethylaminopropinal (1a) at low temperatures yields, after rearrangement of the very instable primary adducts, Z-3-acetoxy-N, N-dimethyl-thioacrylamide (Z-16) and Z-3-thioacetoxy-N, N-dimethylthioacrylamide (Z-17) respectively. The structure of the two compounds can be proved by spectroscopic evidence of 16 and 18, the latter being formed by elimination of thioketene from 17. According to the distribution of S-atoms in 16 and 17, two reaction pathways including 4-membered rings can be ruled out. Thus the rearrangement of 3-acyloxy-N, N-dimethyl-acrylamides most probably proceeds by a mechanism including a dipolar six-membered intermediate.

This mechanism cannot be valid for the rearrangement of the adducts 2 of hydrohalogen acids, alcohols and amines to the alkyne-derivatives 1. The acid-catalysed reaction of 3-chloro-3-dimethylamino-propenal (2, X=Cl), labelled at position 1 with ¹³C, yields 3-chloro-N, N-dimethyl-acrylamide (3, X=Cl), containing the label exclusively at position 3. This result supports a mechanism including an immonium-oxetene 21 (X=Cl) as intermediate. – The experiments are in accord with kinetic investigations.

1. Einleitung. - Alkinderivate mit Push-pull-Gruppen des Typs 1 sind aus den entsprechenden Olefinen durch Bromierung und Eliminierung von HBr mit guten Ausbeuten zugänglich [3-4]. Ihre Reaktionsbereitschaft gegenüber Elektrophilen, Nucleophilen und Cycloadditionspartnern ist gleichermassen ausgeprägt [4]. Die Addition von Aminen und aliphatischen Alkoholen besteht vorwiegend in einem nucleophilen Angriff an C(3) des Alkins 1 und gehorcht einem Geschwindigkeitsgesetz zweiter Ordnung [5]; die anfallenden Michael-Addukte können mit guter bis sehr guter Ausbeute isoliert werden [3] [6]; eine Nebenreaktion macht sich bei schwach nucleophilen Aminen kleiner Raumbeanspruchung bemerkbar [6]. Der erste Schritt der Addition von Halogenwasserstoffsäuren, Carbonsäuren und Phenolen besteht in einem elektrophilen Angriff der Säure am Alkin 1. Der sterische Verlauf der Addition ist vom Rest R an der Carbonylgruppe abhängig: Für R=H werden stereospezifisch, für R=CH3 mit hoher Stereoselektivität die trans-Addukte Z-2 gebildet, während für R=OCH₃ cis- und trans-Addukt in ähnlichem Ausmass entstehen. Kinetische und stereochemische Untersuchungen stehen mit einem einleuchtenden Additionsmechanismus im Einklang [7]. Studien über die Umsetzung der Alkine 1 mit Elektrophilen führten Hafner [8] zum Schluss, dass ein Äthinylogie-Prinzip nur für die Grundzustandseigenschaften und die Primärreaktionen, nicht aber für die zu Produkten führenden Reaktionen äthinyloger Verbindungen gilt.

^{1) 9.} Mitt. über substituierte Aminoacrylderivate. 8. Mitt. siehe [1].

²⁾ Über einen Teil dieser Arbeit wurde in den Kurzmitteilungen [1] und [2] berichtet.

³) Neue Adresse: AC-Laboratorium Wimmis, Technische Abteilung 8.

⁴) Ein Teil der Arbeit war Gegenstand der Lizentiatsarbeit G. Bart, Bern (1972).

⁵) Anfragen sind an den letztgenannten Autor zu richten.

Orientierende Versuche zeigten, dass sich besonders die Addukte von Säuren durch eine hohe Reaktivität auszeichnen und sich spontan (X=R'-COO; R=H, CH₃) oder in Gegenwart von Säurespuren (X=Cl, Br; R=H, CH₃) unter formalem Platzabtausch der Dimethylaminogruppe mit dem Rest R zu substituierten Acrylsäureamiden 3 (R=H) bzw. Crotonsäureamiden (R=CH₃) umlagern [4] [9-10]. Die Anwendungsbreite dieser Reaktion wurde vor kurzem diskutiert [11]: Zahlreiche aliphatische, aber auch aromatische Carbonsäuren lassen sich durch Umsetzung mit den Alkinen 1a und 1b mit ausgezeichneten Ausbeuten in 3-Acyloxy-acrylsäureamide bzw. -crotonsäureamide (3, X=R'-COO) überführen. Andererseits erhält man bei säurekatalytischer Behandlung von 3-Alkoxy-3-dimethylamino-acrolein mit rund 55% Ausbeute 3-Dimethylamino-acrylsäureester (4, X=OR') [4] [9], bei analoger Reaktion von 3-Alkylamino-3-dimethylamino-acroleinen (2, X=NHR') mit mässiger Ausbeute 3-Alkylamino-N, N-dimethyl-acrylamide (3, X=NHR') [11].

Auch der sterische Verlauf der Umlagerung ist von Interesse: Aus den Addukten 2 von Carbonsäuren (X=R'-COO) werden in Abwesenheit von Säurespuren unter kinetischer Kontrolle stereospezifisch (NMR.) die Z-konfigurierten 3-Acyloxy-acrylamide

2428

⁶) Vereinfachtes Formelschema: Carbonsäuren, Halogenwasserstoffsäuren und Phenol bilden mit 1a stereospezifisch, mit 1b mit hoher Stereoselektivität die *trans*-Addukte Z-2, während beim Umsatz mit 1c cis- und *trans*-Addukte in ähnlichem Ausmass gebildet werden. Dagegen liegen die Addukte 2 von sek. Aminen und aliphatischen Alkoholen bei Raumtemperatur meist als Z/E-Gleichgewichtsgemische vor, während bei den Addukten primärer Amine Z-2 im Gleichgewicht dominiert.

(Z-3, R=H) bzw. 3-Acyloxy-crotonsäureamide (Z-3, R=CH₃) gebildet, während bei der Umlagerung der 3-Halogen-, 3-Alkoxy- und 3-Alkylamino-3-dimethylamino-acrylderivate (2, X=Cl, Br, OR', NHR') unter Säurekatalyse die thermodynamisch stabilen Amide 3 und Ester 4 (R=H) bzw. Z/E-Gleichgewichte (R=CH₃) anfallen [11].

2. Spekulative Reaktionsmechanismen. – Für die Umlagerung können drei Mechanismen diskutiert werden, wobei für die einzelnen Varianten zum Teil mehrere Abspiele in Betracht kommen (vgl. später). – Die intermediär auftretenden Addukte 2 besitzen als nucleophile Zentren das Stickstoffatom, das Sauerstoffatom der Carbonylgruppe sowie C(2). Als elektrophile Zentren kommen in Frage: C(3), das Carbonyl-C-Atom des Acrylsystems, sowie zusätzlich, im Falle der Addukte 2 von Carbonsäuren (X=R'-COO), das Carbonyl-C-Atom des Enolesters.

2.1. Ammonium-Mechanismus⁷): Durch nucleophilen Angriff des Stickstoffatoms auf die Carbonylfunktion könnte ein cyclisches Ammonium-enolat 5 entstehen, nach Tautomerisierung (R=H) und Ringöffnung das Säureamid, wobei nach neueren Kenntnissen über die Ringöffnung ähnlicher Systeme [13] das *E*-konfigurierte Acrylsäureamid 3 gebildet würde.

Dieser Reaktionsweg ist schon deshalb wenig wahrscheinlich, weil die Nucleophilie des Stickstoffes in Enamincarbonylsystemen im Vergleich zu tert. Alkylaminen infolge der Beteiligung am Konjugationssystem stark herabgesetzt ist. Während zur Rationalisierung der Reaktion der Addukte 2 von HCl und HBr an 1b ($R=CH_3$) bereits eine 1,3-Methylwanderung herangezogen werden muss, kann die Bildung von 3-Dimethylamino-acrylsäureestern 4 (X=OR') vollends nicht erklärt werden.

2.2. «Oxeten-Mechanismus»⁸): Wesentlich attraktiver ist der folgende erstmals von Hafner vorgeschlagene Reaktionsweg [15] [4]. Hier wird eine Oxeten-Zwischenstufe 6 bzw. ein viergliedriger Übergangszustand 7 sowie eine anionische Wanderung des Substituenten X angenommen⁹).

Von Bedeutung ist die Tatsache, dass die Nucleophilie des Carbonyl-Sauerstoffes unter dem Einfluss des Enamin-Systems wesentlich erhöht wird, während der Austritt der Abgangsgruppe X durch den +M-Effekt der Dimethylaminogruppe erleichtert wird.

⁷⁾ Der ursprüngliche Vorschlag [12] soll in leicht modifizierter Form diskutiert werden.

⁸) Für die Umlagerung von 3,3-Dichlor-acroleinen zu 3-Chlor-acrylsäurechloriden wurde kürzlich von *Roedig* [14] ein analoger Mechanismus angenommen.

⁹) Die Konfiguration der Olefine 2 und 3 wurde den heutigen Kenntnissen entsprechend korrigiert.

Mittels dieser Hypothese kann auch die Umlagerung von substituierten 4-Dimethylamino-butenonen 2 (R=CH₃) erklärt werden. Eine verfeinerte Betrachtung (vgl. später) lehrt, dass unter Berücksichtigung einer Tautomerisierung auch die Bildung von 3-Dimethylamino-acrylsäureestern (4, X=OR') aus 3-Alkoxy-3-dimethylamino-acroleinen (2, X=OR') denkbar ist.

2.3. «Sechsring-Mechanismus»: 1961 untersuchten Woodward & Olofson [16] eine von Claisen & Mumm [17] entdeckte und später intensiv bearbeitete Umlagerung von Isoxazoliumsalzen in Gegenwart von Natriumacetat. Nach Korrektur des falschen Strukturvorschlags des Reaktionsprodukts [16] postulierten sie einen Mechanismus [18]¹⁰), dessen erste Schritte $8 \rightarrow 9 \rightarrow 10 \rightarrow 11$ durch kinetische Resultate, Markierung, sowie durch spektroskopischen Nachweis des Acyl-keten-imins 10 gestützt wurden¹¹).

- Auf diese Arbeiten wurden wir durch eine Literaturrecherche von dipl. Ing. H.-J. Gais aufmerksam [15].
- ¹¹) Ausgehend von sterisch gehinderten Isoxazoliumsalzen konnten Acyl-ketenimine isoliert werden [19].

Die nicht nachgewiesene Verbindung 12 ist den durch Addition von Essigsäure an die Acetylene 1 gewonnenen 3-Acetoxy-3-dimethylamino-acrylderivaten 2 analog¹²); für die Reaktionsfolge $12 \rightarrow 13 \rightarrow 14$ wurden ausser der Isolierung des stereospezifisch gebildeten Z-Acetoxy-acrylamids 14 keine Beweise erbracht.

Demnach kommt für die Addukte von Carbonsäuren an die Alkine 1 zusätzlich zu den beiden Vierring-Varianten der elegante Weg $12 \rightarrow 13 \rightarrow 14$ in Betracht.

3. Mögliche Markierungsexperimente. Zwischen dem «Sechsringmechanismus» und den beiden Vierringvarianten kann prinzipiell durch Markierung der O-Atome der Acetoxygruppe (Schema 5, Markierung ●) unterschieden werden [15], da je nach Mechanismus eine unterschiedliche Verteilung der markierten Atome im Endprodukt auftritt.

Schema 5 Mögliche Umlagerungsmechanismen von 3-Acyloxy-3-amino-acrylderivaten

«Sechsringmechanismus» «Oxetenmechanismus» «Ammoníummechanismus»

¹²) Nach Untersuchungen von Steglich et al. [20] werden auch bei der Umsetzung von Inaminen mit Carbonsäureanhydriden mit hohen Ausbeuten 3-Acyloxy-acrylsäureamide gebildet, wobei substituierte 3-Acyloxy-3-dialkylamino-acrylderivate des Typs 12 als Zwischenstufe postuliert werden.

Andererseits erhält man bei Markierung von C(1) im Edukt (Schema 5, Markierung C*) eine Differenzierung der beiden Vierringvarianten. Als Edukt ist ${}^{13}C(1)$ markiertes Dimethylamino-propinal (1a) besonders interessant, da eine Unterscheidung der Produkte direkt aus der Grösse der ${}^{13}C$, H-Kopplungskonstanten getroffen
werden kann.

4. Mechanismus der Umlagerung von 3-Acyloxy-3-dimethylamino-acrylderivaten. Im Hinblick auf den Umlagerungsmechanismus sind folgende experimentelle Ergebnisse von Wichtigkeit:

- Carbonsäuren setzen sich mit den Alkinderivaten 1a und 1b bereits bei tiefen Temperaturen um, wobei die erwarteten *Michael*-Addukte 2a und 2b (X=R'-COO) selbst bei Alkinüberschuss nicht isoliert werden konnten¹³).
- In Analogie zum sterischen Verlauf der Addition anderer Säuren an die Alkine 1
 [7] kann angenommen werden, dass bei der Reaktion stereospezifisch (1a) bzw. mit hoher Stereoselektivität (1b) Z-3-Acyloxy-3-dimethylamino-acrylderivate 2a
 bzw. 2b gebildet werden.
- Die Verbindungen 2a und 2b (X=R'-COO) lagern sich selbst bei 50° sehr rasch zu 3-Acyloxy-N, N-dimethyl-acrylamiden 3a (R=H) bzw. Crotonsäureamiden 3b (R=CH₃) um, wobei unter kinetischer Kontrolle stereospezifisch die Z-konfigurierten Verbindungen anfallen.

Die auffallende Stereospezifität der Umlagerung von Z-3-Acyloxy-3-dimethylamino-acrylderivaten – die zudem mit grosser Wahrscheinlichkeit in der für die Sechsring-Variante günstigen Konfiguration anfallen – gibt bereits einen Hinweis darauf, dass im Falle von X=R'-COO der *Woodward*-Mechanismus [18] gültig sein könnte.

4.1. Konkurrenzexperimente. Bei Zugabe von Essigsäure zu einem Überschuss an Dimethylaminopropinal (1a) in mit $CaCl_2$ gesättigtes Dimethylsulfoxid enthält das Reaktionsprodukt Z-3a (X=OAc) und Z-2a (X=Cl), jedoch innerhalb der NMR.-

2432

¹³) Bei der Reaktion von Dithioessigsäure mit 1a kann 3-Dithioacetoxy-3-dimethylaminoacrolcin 2a neben bereits umgelagertem Z-3-Thioacetoxy-thioacrylsäure-dimethylamid NMR.-spektroskopisch nachgewiesen werden.

. 250 2433

Nachweisgrenze kein 3-Chlor-N, N-dimethyl-acrylamid. Die Bildung von 3-Chlor-3dimethylamino-acrolein 2a (X=Cl) kann durch Ionenaustausch des in rascher Reaktion gebildeten protonierten Acetylens 15 erklärt werden; die Verbindung lagert sich in Abwesenheit von Säureüberschuss nicht um (vgl. Abschnitt 5). Das Resultat dieses Experiments macht wahrscheinlich, dass bei der Umlagerung von 3-Acetoxy-3-dimethylamino-propenal die Acetoxygruppe nicht aus der Molekel austritt, und spricht somit gegen die Gültigkeit des Oxeten-Mechanismus.

4.2. Umlagerung des Addukts von Monothioessigsäure an 1a. Von der von Hafner [15] vorgeschlagenen Markierung durch ¹⁸O wurde abgesehen, weil beim notwendigen Abbau des markierten Z-3a (X=OAc) sehr leicht ¹⁸O gegen ¹⁶O ausgetauscht werden konnte. Stattdessen setzten wir Dimethylamino-propinal (1a) mit Monothioessigsäure bzw. Dithioessigsäure um.

Eine Markierung der Carboxylgruppe durch Schwefel ist nur dann statthaft, wenn das Verhalten von Thioessigsäuren mit den Acetylenen 1 demjenigen von Carbonsäuren analog ist. Dies wird durch Vorversuche bestätigt. – Beim Einsatz von Monothioessigsäure können sowohl Schwefel wie Sauerstoff um das elektrophile Zentrum von 1a konkurrieren, wobei allerdings zu erwarten ist, dass unter den gewählten Bedingungen der nucleophilere Schwefel dominiert.

Tabelle 1 zeigt, dass sich der Sechsringmechanismus von den beiden Vierringvarianten dann unterscheiden lässt, wenn der Schwefel von Thioessigsäure nucleophil an C(3) des Alkins 1a angreift: In diesem Fall müsste Z-3-Acetoxy-N,N-dimethylthioacrylamid entstehen, andernfalls wäre mit einer Markierung der Acetatgruppe zu rechnen.

Wasserfreie Monothioessigsäure reagiert mit Dimethylamino-propinal (1a) bereits bei tiefen Temperaturen, wobei das *Michael*-Addukt 2a (X=SAc) spektroskopisch nicht nachgewiesen werden kann: Man erhält im Temperaturbereich von -70bis -20° ausser geringen Verunreinigungen stereospezifisch (NMR.) eine Verbindung¹⁴), deren Spektren in Figur 1 wiedergegeben sind.

Zunächst bestätigen Elementaranalyse und Massenspektrum die Summenformel $C_7H_{11}NO_2S$. Das NMR.-Spektrum belegt die Existenz des Strukturelements $H^-C=C^{-H}$, erkennbar an der *cis*-olefinischen Kopplung von 7 Hz der beiden Signale bei 7,03 und 5,78 ppm¹⁵), wobei sich die Absorptionslage von Z-3-Acetoxy-N,N-dimethyl-acrylamid (Vinylprotonen bei 7,32 und 5,52 ppm) nicht wesentlich unter-

¹⁴) Wird die Reaktion mit nicht getrockneter Monothioessigsäure bei 0° ausgeführt, so erhält man ausser Z-16 und E-16 zusätzlich Z/E-3-Acetoxy-acrylsäure-dimethylamid.

¹⁵) Die Feinaufspaltung des Dubletts wird vermutlich durch eine Fernkopplung mit einer der Methylgruppen am Stickstoff hervorgerufen.

Mechanismus	Angreifendes Nucleophil	Addukt	Zwischenzustand	Produkt
Sechsring	S	СH ₃ , С S, С N, С=С, С-Н N, С=С, Н	СН _{3`,C} -О S`,C-О,С-Н ©,N [*] C-С [*] Н	0 сн ₃ -С-0 \$`с-с [€] сн ,`N´-с [€] н
IJ	0	^{СН} 3 ⁵ С 0 ⁵ С=С ^{С-Н} 2 ⁷ С=С ⁴ Н	Сн ₃ , 5 ⁰ 0, с-0 0, N ² С-С ² -Н 0, N ² С-С ² Н	\$ СH ₃ - С-О О [©] С-С ² С-Н , № ^{С-С2} Н
Oxeten	S	CH3 C 0 S C = C H	S S CH3 N H S S CH3	о, Н, с-s-с-сн ₃ , х, с-с, н
n	0	CH ₃ - ^S O' C = C'H		а о N ⁻ C-C ⁺ -O-C ⁻ -CH ₃ N ⁻ C-C ⁺ - н
Ammon i um	S	, N _ C = C < - H СH_3 - S - S - C < H 0	Ф <mark>у ф</mark> сн ₃ с-s н о	⁰ , с-с [€] с-с-сн ₃
11	0	0 ,`N` CH ₃ ~0,C =C, ^C -H S	^е л о ^е н- о ^е сн ₃ с-о н s	н. S S N ^C - C ^C _H

 Tabelle 1. Umlagerung des Addukts von Monothioessigsäure an Dimethylamino-propinal (1a):

 Reaktionsprodukte in Abhängigheit von Mechanismus und Nucleophil

scheidet. Dieselbe Aussage gilt für das Methylsignal bei 2,18 ppm, während die beiden Singulette der Dimethylaminogruppe mit Zentrum bei 3,4 ppm im Vergleich zur schwefelfreien Verbindung um rund 0,4 ppm nach tiefem Feld verschoben sind. Daraus ergibt sich ein Hinweis auf ein Thioamid.

Während das UV.-Spektrum mangels geeigneter Vergleichsspektren keine Rückschlüsse auf die Struktur der Verbindung erlaubt, stützt das IR.-Spektrum den NMR.-Befund: Sowohl die Carbonyl-Streckschwingung (1765 cm⁻¹) wie die C-O-C-Streckschwingungen (1197 und 1050 cm⁻¹) des Vinylesters liegen im Vergleich zu Z-3 (X=OAc) praktisch unverändert; dagegen verschwindet im Spektrum der schwefelhaltigen Verbindung eine der zwei bei 3-Acetoxy-N,N-dimethyl-acrylamid (Z-3a, X=OAc) zwischen 1610 und 1670 cm⁻¹ absorbierenden intensiven Banden. Dafür erscheinen zwei neue Signale mittlerer Intensität bei 1505 und 1265 cm⁻¹.

Die Struktur der Verbindung wird endgültig durch das Massenspektrum gesichert: Die durch intensive Bruchstücke belegte Hauptfragmentierung besteht in

Fig. 1. Spektroskopische Eigenschaften von Z-3-Acetoxy-N, N-dimethyl-thioacrylamid (Z-16)

der Folge $173 \rightarrow 131 \rightarrow 114 \rightarrow 88$ bzw. 70, wobei Molekelion und alle Fragmente dieser Reihe Schwefel enthalten, welcher durch die M + 2-Spitze von etwa 4,5% Intensität angezeigt wird. Folglich wird aus dem Molekelion der Masse 173 durch Abspaltung von Keten das Bruchstück 131 gebildet, welches seinerseits ein Hydroxyl-Radikal verliert und ins Ion der Masse 114 übergeht. Daraus können unter Verlust von Acetylen bzw. Dimethylaminradikal die Ionen 88 bzw. 70 gebildet werden. Diese Fragmentierung beweist, dass der Schwefel in der Säureamidgruppe sitzt. Aufgrund der spektroskopischen Daten kann somit der Verbindung eindeutig die Strukturformel Z-16 zugeordnet werden.

4.3. Umlagerung des Addukts von Dithioessigsäure an 1a. Bei der Umlagerung des Addukts von Dithioessigsäure an Dimethylamino-propinal (1a) sind je nach Mechanismus die durch Schwefel markierten Säureamide 17 oder 20 denkbar, die sich primär durch die Stellung der Schwefelatome unterscheiden¹⁶).

Wasserfreie Dithioessigsäure setzt sich mit Dimethylamino-propinal (1a) bei tiefen Temperaturen um, wobei der Verlauf der Reaktion NMR.-spektroskopisch verfolgt werden kann (Fig. 2).

Nach kurzer Reaktion bei – 80° (Fig. 2A) erkennt man im NMR.-Spektrum das Dublett eines Aldehyd-Protons bei 9,7 ppm, das mit einem Vinylproton bei 5,6 ppm mit 7 Hz koppelt. Lage und Aufspaltung der Signale sprechen für das *Michael*-Addukt **2a** (X=CH₃CS₂)¹⁷). Ausserdem sind nur noch die Signale zweier *cis*-ständiger Vinylprotonen bei 7,7 und 6,1 ppm (*J*=7 Hz) erkennbar, die versuchsweise *Z*-17 zugeordnet werden können. Bei Gültigkeit dieser Annahme entsteht bei der Umlagerung von 3-Dithioacetoxy-3-N, N-dimethylamino-acrolein (**2a**, X=CH₃-CS₂) bei – 80° stereospezifisch *Z*-17.

2436

¹⁶) Die Konfiguration der nach beiden Vierring-Mechanismen entstehenden Säureamide kann aufgrund der Ringöffnung von Vierringsystemen ähnlichen Typs [13] [21] vermutet, aber nicht mit Sicherheit angegeben werden.

¹⁷) In allen bekannten Fällen gehen Säuren mit Dimethylamino-propinal (1a) eine stereospezifische *trans*-Addition ein.

Erwärmt man die Lösung im NMR.-Gerät auf -40° (Fig. 2B), so setzt die Isomerisierung Z-17 \rightleftharpoons E-17 ein, erkennbar an zwei neuen Dubletten bei 9,0 und 6,8 ppm, die mit 11,5 Hz koppeln, während die Signale des *Michael*-Addukts **2a** (X=CH₃-CS₂) abnehmen. Ausserdem treten aber neue Signale auf, deren Intensität beim Stehen bei -20° zunimmt (Fig. 2C).

Nach einer Stunde bei $+20^{\circ}$ sind schliesslich nur noch die Signale der neuen Verbindung erkennbar (Fig. 3D), der aufgrund des spektroskopischen Strukturbeweises die Formel 18 zukommt (s. Schema 8).

Das NMR.-Spektrum enthält ausser dem Bereich der Dimethylaminogruppen die Dublette zweier *cis*-konfigurierter Vinylprotonen (J=7,0 Hz) bei 5,50 und 7,23 ppm, wobei das zweite Signal infolge einer zusätzlichen Kopplung von 12,5 Hz in ein Dublett von Dubletten aufgespalten wird. Das diese Aufspaltung verursachende Proton erscheint als Dublett (J=12,5 Hz) bei sehr tiefem Feld (14,40 ppm). Damit

wird als Strukturelement H C=C H wahrscheinlich. Ausserdem sind mit schwächerer Intensität das Triplett eines Aldehyd-Protons bei 9,87 ppm (J=2,2 Hz) und das Dublett einer Methylengruppe bei 3,88 ppm (J=2,2 Hz) erkennbar, die mit den obigen drei Signalgruppen kein ganzzahliges Intensitätsverhältnis bilden. Als wei-O

teres Strukturelement bietet sich demnach $H-\ddot{C}-CH_{2}$ - an. – Zusammenfassend erhält man als wahrscheinliche Struktur das Keto-Enol-Gleichgewicht 18.

Diese Zuordnung wird durch das IR.-Spektrum bestätigt: Die Carbonylabsorption der Ketoform liegt bei 1725 cm⁻¹ und kann nur der Aldehyd-Gruppe zukommen,

Fig. 3. Spektroskopische Eigenschaften von 18

während die Absorption einer $(CH_3)_2N$ -C-Streckschwingung, die bei ca. 1650 cm⁻¹ liegen müsste, fehlt. Das Proton der Wasserstoffbrücke erzeugt eine sehr breite Bande bei ca. 3000–2000 cm⁻¹, während der intensive Peak bei 1600 cm⁻¹ durch die O-C=C-Streckschwingung erzeugt wird. - Der Strukturvorschlag 18 wird durch das Massenspektrum endgültig gesichert: Die Fragmentierungen M - 17-26 und M - 28-15, die zu schwefelhaltigen Fragmenten führen, belegen, dass die Verbindung ein Thioamid ist. - Dies wird zusätzlich durch eine bei ca. 140° im Hochvakuum eintretende thermische Abspaltung von CO bestätigt, wobei N, N-Dimethyl-thioacetamid 19 gebildet wird.

4.4. Diskussion. Monothioessigsäure und Dithioessigsäure reagieren mit Dimethylaminopropinal (1a) in derselben Weise wie andere Carbonsäuren: Bei schonenden Bedingungen werden unter formaler Wanderung der Dimethylaminogruppe durch Schwefel markierte 3-Acetoxy-N, N-dimethyl-acrylamide gebildet. Dabei entstehen zunächst stereospezifisch die Z-konfigurierten Amide 16 bzw. 17 (s. Schemata 7 und 8), die bei höherer Temperatur cis/trans-Isomerisierung eingehen. Somit darf der für Thiocarbonsäuren abgeleitete Mechanismus auf Carbonsäuren übertragen werden.

Die Verteilung des Schwefels in den Verbindungen 16, 18 und 19 zeigt, dass von den drei diskutierten Mechanismen nur der über die dipolare Sechsring-Zwischenstufe führende Weg (Schema 5, links) möglich ist. Damit wird der aufgrund des sterischen Verlaufs der Addition von Carbonsäuren an die Alkine 1a und 1b, der Stereospezifität der Umlagerung, sowie der Konkurrenzversuche wahrscheinlich gemachte Mechanismus gesichert: Die Addukte von Carbonsäuren an die Alkinderivate

1a und 1b lagern sich nach dem erstmals von Woodward [18] postulierten «Sechsring-Mechanismus» um.

5. Mechanismus der Umlagerung von 3-Halogen-, 3-Alkoxy- und 3-Alkylamino-acrylderivaten. – Der für die Umlagerung der Carbonsäureaddukte Z-2 (X=R'-COO) abgeleitete Mechanismus kann für die Addukte 2 von Halogenwasserstoffsäuren, Alkoholen und Aminen an die Alkinderivate 1 keine Gültigkeit haben, da keine Sechsring-Zwischenzustände des Typs 13 (Schema 4) möglich sind.

Folgende experimentelle Fakten sollen mittels des gültigen Reaktionsschemas erklärt werden können:

- Die isolierbaren Addukte von HCl und HBr an die Alkine 1a und 1b lagern sich in Gegenwart von Säurespuren bei tiefer Temperatur zu 3-Halogen-N, N-dimethylacrylamiden (R=H) bzw. -crotonamiden (R=CH₃) um.
- Energischere Bedingungen sind zur Umlagerung von 3-Alkylamino-3-dimethylamino-acroleinen (2a, X=NHR') notwendig. Auch hier werden unter formalem Platzabtausch der Dimethylaminogruppe mit dem Rest R=H 3-Alkylamino-N, Ndimethyl-acrylamide (3a, X=NHR') gebildet.
- Dagegen gewinnt man bei thermischer Behandlung der Addukte 2a von Alkoholen an 1a 3-Dimethylamino-acrylsäureester (4, X=OR').
- Im Gegensatz zur analogen Reaktion der Carbonsäureaddukte wird die Umlagerung in allen Fällen durch Säuren oder Lewissäuren katalysiert.

Für kinetische Untersuchungen und Markierungsexperimente eignet sich vor allem 3-Chlor-3-dimethylamino-acrolein (**2a**, X=Cl): Die Verbindung kann bei tiefer Temperatur in reiner Form dargestellt werden, sie lagert sich in Gegenwart von Säurespuren bereits bei -50° mit sehr guter Ausbeute zu E-3-Chlor-acrylsäure-N,Ndimethylamid (E-3, X=Cl) um.

Schema 10

5.1. Austauschexperimente. Versetzt man eine Lösung von 3-Chlor-3-dimethylamino-acrolein (**2a**, X=Cl) in Tetrahydrofuran mit vierfachem Überschuss von Essigsäure, so enthält das Reaktionsprodukt neben 80% Z-3a (X=Cl) 20% 3a (X=OAc). Beim Einsatz von zehnfachem Essigsäureüberschuss erhöht sich der Anteil an 3-Acetoxy-N, N-dimethyl-acrylamid (**3a**, X=OAc) auf 35%.

Dieses Experiment macht wahrscheinlich, dass der Halogensubstituent im Verlaufe der Umlagerung mindestens einmal aus der Molekel austritt. Es stellt aber keinen Beweis für die Oxeten-Variante dar, da **3a** (X=OAc) ebenso durch Austritt von Chlorid, Wiedereintritt von Acetat und Umlagerung von Z-2a (X=OAc) nach dem Sechsring-Mechanismus gebildet werden kann.

5.2. **Reaktivitätsreihen.** Da die Umlagerung der 3-Dimethylamino-acrylderivate 2 in vielen Fällen unvollständig abläuft, können nur qualitative Reaktivitätsreihen angegeben werden: Immerhin nimmt die Umlagerungsgeschwindigkeit in der

Reihe der Halogene von Fluor zu Chlor und zu Brom deutlich zu, sie steigt in der Reihe der Amine und Alkohole von $X=NR'_2 zu NHR'$, OC_2H_5 und OCH_3 merklich an.

5.3. Kinetik der säurekatalysierten Umlagerung von 3-Chlor-3-dimethylaminoacrolein (Z-2, X=Cl). 3-Chlor-3-dimethylamino-acrolein kann in Gegenwart von Basenüberschuss (Edukt 1a) nicht zu 3-Chlor-N, N-dimethyl-acrylamid umgelagert werden; bei Anwesenheit eines geringen Säureüberschusses tritt jedoch rasche Reaktion ein. Aus diesem Grund ist die reine kristalline Verbindung bei Raumtemperatur sehr instabil¹⁸).

Fig. 4 zeigt den kinetischen Verlauf der Umlagerung, wobei das Verschwinden des Edukts an der Abnahme des intensiven Singuletts der Dimethylaminogruppe gemessen wird. Die Auftragung von $\ln A_0/A$ gegen die Zeit führt zu einer Geraden durch den Nullpunkt, d.h. die Reaktion folgt einem Geschwindigkeitsgesetz erster oder pseudoerster Ordnung. Dass die zweite Möglichkeit zutrifft, zeigt die deutliche Abhängigkeit der Reaktionsgeschwindigkeit von der Säurekonzentration (Tab. 2).

Fig. 4. Kinetik der Umlagerung von 3-Chlor-3-dimethylamino-acrolein (**2a**, X = Cl, $A_0 = 0,207 \text{ mol/l}$) in Gegenwart von p-Toluolsulfonsäure (10⁻³ mol/l) (Methylenchlorid, 37°).

Die Geschwindigkeit der Umlagerung von 3-Chlor-3-dimethylamino-propenal nimmt mit Zunahme der Solvenspolarität zu. In polaren Lösungsmitteln wie Aceton, Acetonitril oder Dimethylsulfoxid verläuft die Reaktion so rasch, dass die Kinetik NMR.-spektroskopisch nicht gemessen werden kann. Wir beschränkten uns deshalb auf das relativ enge Polaritätsintervall reines Methylenchlorid bis Methylenchlorid/ Nitrobenzol 1:1 (Tab. 3). Auch so kommt die erwartete Beziehung zwischen Reaktionsgeschwindigkeit und Solvenspolarität klar zum Ausdruck, wobei allerdings – vermutlich infolge der Abhängigkeit des Protonierungsgleichgewichts von der

¹⁸) Für kinetische NMR.-Messungen werden ca. 0,2-0,5M Lösungen von Z-2a (X=Cl) hergestellt, die zur Stabilisierung eine bekannte Menge Triäthylamin enthalten.

Tabelle 2. Abhängigkeit de Geschwindigkeitskonstanter von der Säurekonzentration	r 1 k' 1	Tabelle 3. Abhängigkeit von k' von der Solvenspolarität (Gemische $CH_2Cl_2/Nitrobenzol)$; $[H^+] = 10^{-3} mol/l$	
$[H^+] \times 10^{3}$	$k' \times 10^3 (s^{-1})$	Volum-% Nitrobenzol	$k' \times 10^3$ (s ⁻¹)
(p-Toluolsulfonsäure)		0	1,46
		12,5	1,75
0,5	1,46	18,8	2,00
1,0	1,64	25,0	2,19
1,5	1.98	31,2	2,43
2.0	2 42	37,5	3,40
2,0	2,74	4 3,2	4,40
2,5	3,00	50,0	4,55

Solvenspolarität – keine lineare Beziehung zwischen log k' und Polarität der Lösung festgestellt wird.

5.4. Markierungsversuche. Zwischen den beiden Vierring-Mechanismen (s. Schema 5) kann durch Markierung von C(1) von 3-Chlor-3-dimethylamino-acrolein **2a** (X=Cl) unterschieden werden. Besonders elegant ist der Ersatz von ¹²C(1) durch ¹³C(1), da die Position von ¹³C im Produkt ohne Abbau aus der Analyse des NMR.-Spektrums hervorgeht. Schema 11 gibt die Synthese des Edukts **1a** wieder; die Gesamtausbeute über alle Stufen beträgt – ausgehend von 30–50 mg ¹³C-Paraformaldehyd – 14%.

Schema 11

 $H-C \equiv C \stackrel{\bigcirc}{} N \stackrel{\bigcirc}{=} H \stackrel{\frown}{} C \equiv C \stackrel{\frown}{} C \stackrel{\frown}{=} H \stackrel{\frown}{=} H - C \equiv C \stackrel{\frown}{} C \stackrel{\frown}{=} H \stackrel{\bigcirc}{=} H - C \equiv C \stackrel{\frown}{} C \stackrel{\frown}{=} H \stackrel{\bigcirc}{} H \stackrel{\frown}{=} C \equiv C \stackrel{\frown}{=} C \stackrel{\frown}{=} H \stackrel{\frown}{} H \stackrel{\frown}{=} H \stackrel{\frown}{=} C \equiv C \stackrel{\frown}{=} C \stackrel{\frown}{=} H \stackrel{\frown}{} H \stackrel{\frown}{=} H \stackrel{\frown}{=} C \equiv C \stackrel{\frown}{=} H \stackrel{\frown}{} H \stackrel{\frown}{=} H \stackrel{\frown}{=} C \equiv C \stackrel{\frown}{=} H \stackrel{\frown}{} H \stackrel{\frown}{=} H$

Das NMR.-Spektrum von ¹³C(1)-markiertem 2-Brom-3-dimethylamino-propenal (Fig. 5 oben) enthält – symmetrisch zum Signal des Aldehyd-Protons der unmarkierten Verbindung bei 8,77 ppm – ein Dublett mit einer ¹³C, H-Kopplung von 172 Hz, während das Signal von H–C(3) bei 7,21 ppm eine ¹³C, H-Kopplung von 6,0 Hz aufweist. Durch Integration wird ein ¹³C-Gehalt von 85 $\pm 1\%$ ermittelt.

Das NMR.-Spektrum von nichtmarkiertem E-3-Chlor-acrylsäure-dimethylamid (Fig. 5 unten) enthält ausser dem Signal der Dimethylaminogruppe das Dublett von H-C(3) bei 7,23 ppm, während H-C(2) ein Dublett bei 6,68 ppm erzeugt. Diese Zu-

Fig. 5. NMR.-Spektren von $^{13}C(1)$ -2-Brom-3-dimethylamino-propenal (oben), dem Reaktionsprodukt von $^{18}C(1)$ -Dimethylamino-propinal mit HCl (Mitte) und E-3-Chlor-acrylsäure-dimethylamid (unten)

ordnung geht aus der Übereinstimmung der Signallagen mit den nach Simon [22] abgeschätzten Werten hervor.

Das NMR.-Spektrum von ¹³C-markiertem E-**3a** (X=Cl, Fig. 5, Mitte) belegt, dass die Markierung (innerhalb der NMR.-Nachweisgrenze) ausschliesslich an C(3) sitzt. Dies beweisen die grosse ¹³C, H-Kopplung von H-C(3) (200 Hz) sowie die kleine ¹³C, H-Kopplung von H-C(2) (7,7 Hz). Die quantitative Auswertung des Integramms¹⁹) ergibt einen ¹³C-Gehalt von 86 \pm 1%.

¹⁹) Zu diesem Zweck wurden mindestens 25 mit grossem Schreiberausschlag gefahrene Integramme gemittelt.

Aufgrund dieses Experiments kann der «Ammonium-Mechanismus» (Schema 5, rechts) mit Sicherheit ausgeschlossen werden; die Versuche sind mit dem «Oxeten-Mechanismus» (Schema 5, Mitte) in voller Übereinstimmung.

5.5. Diskussion. Die Untersuchungen zeigen, dass die Umlagerung von 3-Chlor-3dimethylamino-acrolein **2a** (X=Cl) zu **3a** (X=Cl) durch Säure katalysiert wird. Die Kinetik folgt (bei konstanter Säurekonzentration) einem Geschwindigkeitsgesetz pseudoerster Ordnung, die Reaktionsgeschwindigkeit nimmt mit zunehmender Solvenspolarität stark zu. ¹³C-Markierungen bestätigen die aufgrund der präparativen Ergebnisse geäusserte Vermutung, dass von den beiden in Frage kommenden Vierring-Varianten der «Ammonium-Mechanismus», d.h. ein primärer nucleophiler Angriff des Amin-Stickstoffs auf die Carbonylfunktion, ausgeschlossen werden kann. Für den verbleibenden «Oxeten-Mechanismus» kommen mehrere Abspiele in Betracht. Der gültige Weg sollte auch mit der qualitativen Zunahme der Umlagerungsgeschwindigkeit in der Reihe X = F \leq Cl \leq Br und X = NR₂ \leq NHR' \leq OC₂H₅ \leq OCH₃ vereinbar sein sowie die Tatsache erklären können, dass aus 3-Alkoxy-3-dimethylamino-acrolein **2a** (X=OR') in Abweichung vom üblichen Schema 3-Dimethylamino-acrylsäureester **4** entstehen.

Die von *Hafner* vorgeschlagenen Alternativen [15] [4] (Weg A und B), die nachstehend in etwas ausführlicherer Notation wiedergegeben werden, unterscheiden sich durch den Zeitpunkt des Austritts des Substituenten X:

Weg A kann die Bildung von 3-Aminoacrylsäureestern aus 3-Alkoxy-3-dimethylaminoacroleinen erklären (vgl. Weg C). Er ist mit den experimentellen Befunden dann in guter Übereinstimmung, wenn der Schritt A-2 geschwindigkeitsbestimmend ist: Die Reaktion sollte durch gute Abgangsgruppen erleichtert und durch Säure katalysiert werden (Protonierung von X), die Reaktionsgeschwindigkeit müsste parallel zur Solvenspolarität zunehmen. – Mehrere Gründe sprechen aber dafür, dass A-2 nicht der langsamste Schritt der Reaktion ist: Erstens wird der Austritt von X aus 6 in jeder Phase durch die Dimethylaminogruppe wirkungsvoll unterstützt, wobei ein Immoniumoxeten 21 entsteht, dessen positive Ladung über mehrere Zentren delokalisiert ist und dessen Energie möglicherweise erheblich tiefer liegt als diejenige von 6. Dies spricht gegen eine hohe Aktivierungsenergie des Schrittes $6 \rightarrow 21$. Zum andern dürfte der Schritt A-1, bei welchem aus 2 unter Verlust an Delokalisierungsenergie das gespannte Oxeten 6 gebildet wird, durch eine hohe Energiebarriere gekennzeichnet sein. – Aus diesen Gründen²⁰) nehmen wir an, dass der erste Schritt der Variante A geschwindigkeitsbestimmend ist. In diesem Falle kann weder die beobachtete Reaktivitätsreihe noch die Zunahme der Reaktionsgeschwindigkeit mit der Solvenspolarität, noch die Säurekatalyse²¹) überzeugend erklärt werden.

Weg B ist durch eine synchron mit dem Austritt von X erfolgende Übertragung des Sauerstoffs von C(1) auf C(3) des Acrylsystems 2 gekennzeichnet, wobei über den Übergangszustand 7 das Kation 23 gebildet wird, das sich in einer ohne Zweifel raschen Folgereaktion zu 3 stabilisiert²²). Diese Alternative könnte mit mehreren experimentellen Befunden in Einklang gebracht werden: Die Reaktionsgeschwindigkeit würde mit zunehmender Solvenspolarität ansteigen, gute Abgangsgruppen wie Cl und Br sollten die Reaktion erleichtern. – Gegen die Gültigkeit dieses Weges spricht jedoch die ausserordentlich ungünstige Energiebilanz des ersten Schrittes B-1, bei welchem ein im Falle von R=H, CH_3 schlecht stabilisiertes Vinylkation entstehen würde. Ferner kann die Bildung von 3-Dimethylamino-acrylsäureestern aus 3-Alkoxy-3-dimethylamino-acroleinen nicht erklärt werden. Schliesslich verbleibt eine von *Hafner* [15] [4] nicht in Erwägung gezogene Möglichkeit:

Weg C umfasst als geschwindigkeitsbestimmenden Schritt den Austritt des Substituenten X. Das intermediär gebildete Vinylkation 24²³) lagert sich zum Im-

²⁰⁾ Schritt A-3 wäre mit der festgestellten Polaritätsreihe nicht in Übereinstimmung, während hinlänglich bekannt ist [21], dass Oxetene des Typs 22 sehr leicht Ringöffnungen zu Acrylderivaten eingehen.

23) Zum Nachweis von Vinylkationen als reaktive Zwischenstufen vgl. [24], dort weitere Zitate.

²¹) Durch die sowohl kinetisch wie thermodynamisch bevorzugte O-Protonierung von Enamincarbonylsystemen [23] wird die Nucleophile des Carbonylsauerstoffs erheblich herabgesetzt.

²²) Im Gegensatz zur Ringöffnung von Oxetenen des Typs **22** [21] dürfte der Schritt $23 \rightarrow 3$ nicht mit hoher Stereoselektivität verlaufen.

monium-oxeten 21 um. Wiedereintritt des Substituenten X und Ringöffnung des ohne Zweifel sehr reaktiven Oxetens 22 würde zum substituierten Acrylsäureamid 3 führen, wobei nach Ergebnissen mit intermediär auftretenden Oxetenen ähnlichen Typs [21] das E-konfigurierte 3-X-N, N-Dimethyl-acrylamid bzw. -crotonamid E-3 entstehen sollte.

Zweifellos ist die Aktivierungsenergie des ersten Schrittes auch hier beträchtlich; immerhin entsteht – im Gegensatz zu Weg **B** – ein durch die Dimethylaminogruppe stabilisiertes Vinylkation **24**, eine Zwischenstufe, die auch bei der Protonierung der Alkine 1 mit Push-pull-Gruppen durchlaufen wird [7]²⁴), sich aber ausser der Rückreaktion zu **2** auch durch Umlagerung in das delokalisierte Immonium-Oxeten **21** stabilisieren kann.

Der Weg C ist mit allen bekannten experimentellen Befunden in Übereinstimmung: Der Austritt von X aus 2 sollte durch Säuren wirkungsvoll katalysiert werden. Die Reaktion wäre bei konstanter Säurekonzentration pseudoerster Ordnung, mit zunehmender Solvenspolarität sollte eine Erhöhung der Reaktionsgeschwindigkeit einhergehen. Gute Abgangsgruppen X müssten die Reaktivität der Verbindung 2 heraufsetzen, womit die Reaktivitätsreihen für X = F \ll Cl < Br und X = NR₂ < NHR' < OC₂H₅ < OCH₃ plausibel sind²⁶). Ferner eröffnet sich eine Möglichkeit zur Bildung von Acrylsäureestern über die Stufen 22 und 25 (R=H), wobei allerdings nicht begründet werden kann, weshalb für X=OR' die Ester 4, für X=Cl und Br ausschliesslich (NMR.) die Säureamide 3 anfallen.

Aufgrund des vorgeschlagenen Reaktionsschemas kann grundsätzlich auch die Frage beantwortet werden, weshalb die Umlagerungsgeschwindigkeit beim Übergang von R=H, CH₃ zu R=OCH₃ stark abfällt: Gegen die Schritte $2 \rightleftharpoons 24 \rightleftharpoons 21^{25}$) ist auch bei substituierten Acrylsäureestern nichts einzuwenden. Im Vergleich zu R=H, CH₃ wird aber die Energie des Oxeten-Immoniumsalzes 21 durch Beteiligung der Alkoxygruppe am Konjugationssystem wesentlich abnehmen. Dies lehren die

²⁴) Beim Umsatz von HCl mit einem Überschuss des Alkins 1 werden ausschliesslich die Addukte
2 (X=Cl) gebildet, ohne dass eine Umlagerung zu 3 eintritt. Dies zeigt, dass die Geschwindigkeit der Rückreaktion 24 → 2 wesentlich grösser ist als die des langsamsten Folgeschrittes der Reihe 24 → 21 → 22 → 3.

²⁵⁾ Die Annahme von reversiblen Schritten 2 ≈ 24 ≈ 21 mit k₁ ≤ k₋₁, k₂ ist eine plausible Arbeitshypothese, die durch das ermittelte Geschwindigkeitsgesetz sowie das Verhalten der Alkine 1 beim Umsatz mit HCl gestützt²⁴), jedoch nicht zweifelsfrei bewiescn wird.

²⁶) Die überraschend geringe Umlagerungstendenz der 3-Phenoxy-3-dimethylamino-acrylderivate 2 ($X = OC_6H_5$) ist möglicherweise auf die Senkung der Energie des Addukts 2 infolge der erhöhten π -Elektronen-Delokalisierung von 2 ($X = OC_6H_5$) im Vergleich zu 2 (X = O-Alkyl) zurückzuführen.

strukturell ähnlichen Cyaninsalze **26** (X=BF₄) [25], die für X=BF₄ bei Raumtemperatur über Stunden stabil sind. – Da zudem der Angriff des Nucleophils X⁻ (das bei Säurekatalyse in protonierter Form vorliegen würde) auch sterisch erheblich beeinträchtigt wird, könnte im Falle von Estern der Reaktionsschritt C-3 geschwindigkeitsbestimmend werden und eine erhebliche Aktivierungsenergie aufweisen.

Zusammenfassend schliessen die Resultate der Markierungsversuche einen viergliedrigen Zwischenzustand des Typs 5 (*«Ammonium-Mechanismus»*) aus. Als Alternative wird ein *«Oxeten-Mechanismus»* postuliert, wobei aber in Ergänzung der Vorschläge von *Hafner* [15] [4] angenommen wird, dass im ersten Schritt unter Austritt des Substituenten X aus 2 ein stabilisiertes Vinylkation 24 entsteht (Weg C). Sicher liegen zahlreiche Einzelheiten noch im dunkeln, immerhin können aufgrund des vorgeschlagenen Reaktionsschemas (Weg C) alle wesentlichen präparativen und kinetischen Befunde erklärt werden.

Dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung sind wir für die Unterstützung der Arbeit zu Dank verpflichtet. (Projekt Nr. 261172) – Wir danken Herrn Prof. Dr. K. Hafner, Technische Hochschule Darmstadt, für anregende Diskussionen anlässlich eines Studienaufenthaltes von M. N. an der TH Darmstadt (1966–68).

Experimenteller Teil²⁷)

Wir danken Herrn *M. Künzi* für geschickte experimentelle Mitarbeit. Die Massenspektren verdanken wie Herrn PD Dr. U. P. Schlunegger, Universität Bern, die Elementaranalysen Herrn Dr. K. Eder, Laboratoire microchimique, Ecole de Chimie, Universität Genf. Frau *M. Niederhauser-Gerber* sind wir für die Aufnahme der NMR.- und IR.-Spektren sowie für die Anfertigung der Figuren zu Dank verpflichtet. – Alle Reaktionen wurden in abs. Lösungsmitteln mit abs. Reagenzien durchgeführt. Abkürzungen: $\ddot{A} = \ddot{A}$ ther, DMS = Dimethylsulfoxid, EE = Essigsäureäthylester, MC = Methylenchlorid, THF = Tetrahydrofuran; s =Singulett, d =Dublett, s =stark, m =mittel, w =schwach, b =breit, s =Schulter.

Mechanismus der Umlagerung von 3-Acyloxy-3-dimethylamino-acrylderivaten. – Umsetzung von Dimethylamino-propinal (1a) mit Essigsäure in Gegenwart von $CaCl_2$ (Konkurrenzexperiment). 97 mg (1 mmol) Dimethylamino-propinal (1a), gelöst in 2 ml mit $CaCl_2$ gesättigtem DMS, werden bei 20° tropfenweise mit 48 mg (0,8 mmol) Essigsäure in 1 ml DMS versetzt. Die Reaktionsmischung enthält laut NMR.-Spektrum 75% Z/E-3-Acetoxy-acrylsäuredimethylamid (3a, X=OAc) neben 25% Z-3-Chlor-3-dimethylamino-acrolein (2a, X=Cl).

Z-3-Acetoxy-thioacrylsäure-dimethylamid (Z-16) aus Dimethylamino-propinal (1a) und Monothioessigsäure¹⁴). 388 mg (4 mmol) Dimethylamino-propinal (1a) in 4 ml CHCl₃ werden bei -40° innerhalb von 15 Min. mit 304 mg (4 mmol) Monothioessigsäure (purum *Fluka*, über Molekularsieb getrocknet) in 4 ml CHCl₃ versetzt. Nach 30 Min. Rühren bei -20° dampft man bei 12 Torr/ 20° ein und chromatographiert an Silicagel²⁸) zunächst mit MC, wobei Verunreinigungen eluiert werden, dann mit MC/THF 19:1. Man engt ein und erhält 550 mg (79%) braunes Öl, das beim Abkühlen auf -20° kristallisiert. Nach 2maliger Umkristallisation aus Ä/EE 9:1 bei -80° : 450 mg (65%) hellbraune Kristalle von Z-16: Smp. 58-59°, Spektren vgl. Fig. 1.

E-3-Acetoxy-thioacrylsäure-dimethylamid (E-16). 200 mg (1,15 mmol) Z-3-Acetoxy-thioacrylsäure-dimethylamid (Z-16) in 2 ml CHCl₃ werden während 6 Tagen bei 50° gehalten, wobei ca. 50% E-16 entstehen. Zur Trennung der Isomeren chromatographiert man 2mal an Silicagel²⁸) mit MC/THF 19:1 und eluiert Z-16 (1. Fraktion) und E-16 (2. Fraktion). E-16 kann durch Um-

²⁷) Bezüglich weiterer allgemeiner Bemerkungen vgl. [7] [11].

²⁸) Merck Nr. 7734, über der Bunsenflamme getrocknet.

²⁹) Hauptfragmente (rel. Intensität in %).

kristallisation aus Ä/EE gereinigt werden. – NMR. $(CDCl_3): 8,40/d$ (J = 12)/1H; 6,49/d (J = 12)/1H; 3,54/bs und 3,33/bs/total 6H; 2,19/s/3H. – IR. (CCl_4) , Bereich von 1800–1600 cm⁻¹): 1773 s, 1646 m-s. – MS.²⁹): 173 (M⁺, 18), 131(11), 130(1,5), 116(1,5), 115(2), 114(28), 103(3), 98(1,5), 88(9), 87(10), 85(3), 84(1,5), 81(1,5), 74(6), 73(6), 71(1,5), 70(9), 61(8), 60(1,5), 59(8), 58(3), 56(1,5), 55(1,5), 46(3), 45(22), 44(29), 43(100), 42(22), 41(1,5).

 $C_7H_{11}NO_8S$ (173,2) Ber. C 48,53 H 6,40 N 8,09% Gef. C 48,36 H 6,61 N 8,17%

Dithioessigsäure³⁰). 8,6 g (350 mmol) Mg-Späne werden mit 50 g (350 mmol) Methyljodid in 150 ml Å umgesetzt. Die Lösung wird auf -5° abgekühlt und unter Rühren tropfenweise mit 31,7 g (415 mmol) CS₂ versetzt. Man lässt während 24 Std. bei $+5^{\circ}$ stehen, versetzt bei -5 bis -10° vorsichtig mit Eis, anschliessend mit 2*N* HCl. Die Wasserphase wird abgetrennt, 2mal ausgeäthert und verworfen. Man extrahiert die vereinigten Ä-Phasen mit 2*N* Na₂CO₃ und schüttelt zur Entfernung von Mercaptanen 5mal mit Ä aus. Man säuert die Wasserphase mit eiskalter 2*N* HCl an, nimmt die freie Dithioessigsäure in Ä auf, trocknet 2 Std. über Na₂SO₄ und destilliert den Ä bei 720 Torr ab. Rohausbeute: 7 g (22%). Das Rohprodukt wird bei 5 Torr/20° unter Stickstoff in eine auf -80° gekühlte Vorlage destilliert: 5,2 g (16%) Dithioessigsäure, die über Molekularsieb 4 Å aufbewahrt wird. - NMR. (CDCl₃): 6,30/bs/1H; 2,87/s/3H. - IR. (CCl₄): 2566 w, 1429 w, 1356 w, 1222 s, 1102 m, 903 m, 870 sh, m, 858 m, 579 w-m, 448 w. - MS.²⁰): 94(1), 93(1), 92(M⁺, 12), 91(1), 77(3), 76(4), 73(1), 64(3), 61(4,5), 60(4,5), 59(100), 58(29), 57(15), 56(3), 47(2), 46(2), 45(12), 44(4), 43(2), 34(8,5), 33(6,5), 32(10).

Verfolgung der Umsetzung von Dithioessigsäure mit Dimethylamino-propinal (1a) im NMR.-Spektrometer (Fig. 2). 194 mg (2 mmol) Dimethylamino-propinal (1a) in 2 ml CDCl_3 werden bei -80° unter Stickstoff und Rühren innerhalb von 10 Min. mit 175 mg (1,9 mmol) Dithioessigsäure in 1 ml CDCl_3 versetzt. Man füllt die Lösung bei -80° unter Wasserausschluss in ein vorgekühltes NMR.-Röhrchen um und analysiert zunächst bei -80° (A), dann bei -40° (B), -20° (C) und nach 1stdg. Ausreagieren bei Raumtemp. bei 20° (D).

3-Hydroxy-thioacrylsäure-dimethylamid (18). 727 mg (7,5 mmol) Dimethylamino-propinal (1a) in 5 ml CHCl₃ werden unter Stickstoff und Rühren innerhalb von 20 Min. mit 660 mg (7,2 mmol) Dithioessigsäure in 5 ml CHCl₃ versetzt. Man hält 4 Std. bei -20° , dann 1 Std. bei $+20^{\circ}$, engt bei 10^{-1} Torr/20° ein und erhält 950 mg Rohprodukt (Rohausbeute ca. 100%), das laut NMR.-Spektrum neben wenig 1a ca. 10% Verunreinigungen enthält. 18 zersetzt sich bei der Chromatographie an Al₂O₃, SiO₂ und Polyamid. Bei Sublimationsversuchen (10⁻⁴ Torr/20–30°) bildet sich unter CO-Abspaltung allmählich Thioessigsäure-dimethylamid (19).

Kleine Mengen an reinem **18** können wie folgt gewonnen werden: Man unterteilt das Rohprodukt in 5 Portionen und sublimiert während je 5 Min. bei 10^{-4} - 10^{-5} Torr/20-30°. Die vereinigten Sublimate, die neben **18** bereits wenig **19** enthalten, werden 2mal bei -80° aus Ä umkristallisiert und bei 10^{-4} Torr/ -20° von Ä befreit: 49 mg (5%) bei Raumtemp. thermisch labile gelbe Kristalle. Spektren vgl. Fig. 3. Masse des Molekelions im MS.: 131,0406 (Ber. für C₅H₃NOS: 131,0405).

Thioessigsäure-dimethylamid (19). Analog zu obenstehender Vorschrift werden 727 mg (7,5 mmol) Dimethylamino-propinal (1a) mit 660 mg (7,2 mmol) Dithioessigsäure umgesetzt. Das Rohprodukt wird nach dem Abtrennen des Lsgm. bei 720 Torr während 30 Min. auf 120–140° erhitzt, wobei 18 unter CO-Abstaltung in 19 übergeht. Man sublimiert bei 10^{-4} Torr/40° und erhält 348 mg (45%) 19, das 2mal bei -80° aus Ä/EE umkristallisiert wird, wobei hellgelbe Nadeln anfallen. – NMR. (CDCl₃): 3,49/bs/3H; 3,29/s/3H; 2,64/bs/3H. – IR. (CCl₄): 2930 m, 1505 s, 1410 m-s, 1390 s, 1360 m-s, 1285 s, 1176 m, 1135 m, 1012 s, 867 m, 658 w-m. – MS.²⁹): 105(4,5), 104(6,5), 103(100), 102(2), 88(11), 87(1), 73(3), 72(1), 71(2), 70(23), 69(2), 68(1), 61(3), 60(3), 59(48), 58(9), 57(2), 56(12), 55(8), 54(2), 52(1), 47(6,5), 46(1), 45(6,5), 44(45), 43(3), 42(22), 41(2), 40(1), 39(1). C₄H₂NS Ber. C 46,56 H 8,79 N 13,57 S 31,07%

 $C_4H_9NS \quad {\rm Ber.} \ C\ 46,56 \quad H\ 8,79 \quad N\ 13,57 \quad S\ 31,07\% \\ (103,2) \quad {\rm Gef.} \ ,,\ 46,70 \quad ,,\ 8,84 \quad ,,\ 13,33 \quad ,,\ 30,8 \ \%$

Mechanismus der Umlagerung von 3-Halogen-, 3-Alkoxy- und 3-Alkylaminoacrylderivaten: Umlagerung von Z-3-Chlor-3-dimethylamino-propenal (Z-2a, X=Cl) in Gegenwart von Essigsäure-Überschuss (Austauschexperiment). 66 mg (0,5 mmol) Z-3-Chlor-3-dimethyl-

³⁰) Vorschrift [26] wurde modifiziert.

amino-propenal (Z-3a, X=Cl) in 1 ml THF werden bei 20° in eine Lösung von 120 mg (2 mmol) Essigsäure in 1 ml THF eingetropft. Man hält 10 Min. bei 20°, engt ein und schleppt Lösungsmittelspuren mehrmals mit wenig CDCl_3 ab. Das Reaktionsprodukt enthält laut NMR.-Spektrum 80% Z-3a (X=Cl) neben 20% Z/E-3a (X=OAc). Beim Einsatz von 10fachem Essigsäure-Überschuss erhöht sich der Anteil von 3-Acetoxy-acrylsäure-dimethylamid (Z/E-3a, X=OAc) auf 35%.

Kinetik der säurekatalysierten Umlagerung von 3-Chlor-3-dimethylamino-propenal (Z-2a, X=Cl). A. Herstellung einer Stammlösung von Z-2a (X=Cl): ca. 270 mg umkristallisiertes, bei 10^{-4} Torr/ -40° getrocknetes Z-2a (X=Cl) [7] werden bei -40° in 5 ml MC, das zur Stabilisierung 0,001 mol/l Triäthylamin enthält, gelöst, wobei man die exakte Konzentration von Z-2a (X=Cl) UV.-spektroskopisch bestimmt ($\lambda_{max} = 297$ nm, $\varepsilon = 33100$). Die Lösung ist bei -80° einige Tage haltbar.

B. Reaktionsordnung. Beispiel. 0,5 ml einer 0,414*M* Stammlösung von *Z*-2a (X=Cl) in MC werden bei 37° in einem Guss mit 0,5 ml einer 0,003*M* Lösung von *p*-Toluolsulfonsäure in MC versetzt. Man misst NMR.-spektroskopisch bei 37° in Intervallen von 30 Sek. die Abnahme des Dimethylamino-Signals von *Z*-2a (X=Cl). Trägt man ln A_0/A (A = Konzentration von *Z*-2a (X=Cl)) gegen die Zeit auf, to resultiert eine Gerade (Geschwindigkeitsgesetz 1. Ordnung).

C. Abhängigkeit von k' von der Säurekonzentration. Die Kinetik der Umlagerung von Z-2a (X = Cl) wird bei variabler p-Toluolsulfonsäure-Konzentration wie oben gemessen und graphisch ausgewertet, wobei der Triäthylamingehalt der Stammlösung bei der Berechnung der Säurekonzentration zu berücksichtigen ist.

D. Abhängigkeit von k' von der Solvenspolarität. Beispiel. 0,5 ml einer 0,414 M Stammlösung von Z-2a (X=Cl) in MC werden bei 37° in einem Guss mit 0,5 ml einer 0,003M Lösung von p-Toluolsulfonsäure in Nitrobenzol vereinigt. Messung und Auswertung erfolgen analog zu Beispiel **B**.

 $^{13}C(1)$ -Dimethylamino-propenal aus ^{13}C -Paraformaldehyd, Na-acetylid und Dimethylamin. 31 mg (1 mmol) ^{13}C -Paraformaldehyd (Merck Canada, ^{13}C -Gehalt laut MS. 85,5%) werden bei 140–150° innerhalb von 20 Min. depolymerisiert 31) und im Stickstoffstrom in eine auf -70° gekühlte Lösung von 500 mg Na-acetylid in 4 ml flüss. NH₃ eingeleitet. Man dampft das NH₃ ab, versetzt bei 0° unter Stickstoff tropfenweise mit 2 ml H₂O und neutralisiert anschliessend mit konz. HCl. Die Lösung wird 3mal mit je 20 ml Ä ausgeschüttelt. Man destilliert den Ä bis auf ca. 2 ml ab, versetzt mit 10 ml einer 2M Lösung von Dimethylamin in THF und 200 mg MnO₂ (Merck Nr. 5958). Man rührt bei 60° während 90 Min., filtriert, engt bei 12 Torr/20° ein und destilliert den Rückstand im Kugelrohr bei 10⁻⁴Torr/20°: 25 mg (25%) $^{13}C(1)$ -3-Dimethylamino-propenal als farbloses Öl.

 $^{13}C(1)$ -2-Brom-3-dimethylamino-propenal. Eine Lösung von 25 mg (0,25 mmol) $^{13}C(1)$ -3-Dimethylamino-propenal in 0,5 ml MC wird bei 0° unter Stickstoff und Rühren mit 42,5 mg (0,25 mmol) Brom in 0,25 ml MC bis zur bleibenden Gelbfärbung versetzt. Man tropft bei 0° 28 mg (0,28 mmol) Triäthylamin zu, versetzt mit 1 ml abs. Ä, filtriert und engt ein. Man kristallisiert bei -80° aus wenig THF um: 36 mg (75%) $^{13}C(1)$ -2-Brom-3-dimethylamino-propenal. – NMR.: vgl. Fig. 5 oben. ^{13}C -Gehalt: 85 \pm 1% laut NMR.

 $^{13}C(1)$ -Dimethylamino-propinal ($^{13}C(1)$ -1a). Eine Lösung von 48 mg (0,25 mmol) $^{13}C(1)$ -2-Brom-3-dimethylamino-propenal in 1 ml THF wird bei 0° mit 0,225 mmol Kalium-t-butylat in 0,5 ml THF/t-Butylalkohol 5:2 versetzt³²). Man rührt 10 Min. bei 0°, zentrifugiert das ausgefallene KBr ab, engt bei 12 Torr/20° ein und schleppt Lsgm.-Spuren mehrmals mit wenig säurefreiem CDCl₃ ab³³).

 $^{13}C(3)$ -Z-3-Chlor-acrylsäure-dimethylamid ($^{13}C(3)$ -**3a**, X=Cl). 24,5 mg (0,25 mmol) $^{13}C(1)$ -Dimethylamino-propinal ($^{13}C(1)$ -**1a**) werden mit 0,5 ml einer ges. Lösung von Triäthylammoniumhydrochlorid in CDCl₃ versetzt und während 1 Std. bei 35° gehalten. Man engt durch Einblasen

³¹⁾ Falls die Depolymerisation sehr langsam abläuft, setzt man ca. 1% p-Toluolsulfonsäure zu.

³²) Der Umsatzgrad wird NMR.-spektroskopisch kontrolliert, die Reaktion bei einem Umsatzgrad von 90-95% abgebrochen. Ein Überschuss an Kalium-t-butylat ist strikte zu vermeiden.

³³) Das markierte Produkt wird ohne weitere Reinigung mit HCl umgesetzt. Vorversuche mit 50 mg nicht markiertem 2-Brom-3-dimethylamino-propenal ergeben nach anschliessender Kugelrohrdestillation 37 mg (75%) 1a.

von Stickstoff ein, versetzt mit 5 ml THF, filtriert und engt bei 10 Torr/20° ein. Spuren von Triäthylamin werden 2mal mit je 2,5 ml THF abgeschleppt. – Der Rückstand wird in 0,3 ml CDCl₃ gelöst. – NMR. von ¹³C(1)-**2a** (X=Cl) (CDCl₃): 9,60/2d (J = 173, J' = 7)/1H; 5,22/2d (J' = 7, J'' = 2), 1H; 3,16/s/6H.

Man lässt die Lösung bei Raumtemp. stehen, wobei Umlagerung zu ¹³C(3)-3-Chlor-acrylsäure-dimethylamid eintritt³⁴). Nach beendeter Reaktion (Kontrolle im NMR.) engt man ein, chromatographiert an Silicagel mit MC/THF 3:1 und erhält 27,5 mg (82%) farbloses Öl. – NMR.-Spektrum vgl. Fig. 5 Mitte. ¹³C-Gehalt: 86 \pm 1% laut NMR., 85,5 \pm 0,5% laut MS.

LITERATURVERZEICHNIS

- [1] M. Neuenschwander & A. Niederhauser, Chimia 27, 379 (1973).
- [2] M. Neuenschwander, G. Bart & A. Niederhauser, Chimia 27, 73 (1973).
- [3] K. Hafner & M. Neuenschwander, Angew. Chem. 80, 443 (1968); Angew. Chem. internat. Edit. 7, 459 (1968).
- [4] H.-J. Gais, K. Hafner & M. Neuenschwander, Helv. 52, 2641 (1969).
- [5] M. Neuenschwander & P. Bigler, Helv. 56, 959 (1973).
- [6] A. Niederhauser, A. Frey & M. Neuenschwander, Helv. 56, 944 (1973).
- [7] A. Niederhauser & M. Neuenschwander, Helv. 56, 1331 (1973).
- [8] H.-J. Gais, K. Hafner & H. J. Lindner, Tetrahedron Letters 1973, im Druck; K. Hafner, persönliche Mitteilung vom 8.5.1973.
- [9] M. Neuenschwander & K. Hafner, Angew. Chem. 80, 444 (1968); Angew. Chem. internat. Edit. 7, 460 (1968).
- [10] M. Neuenschwander & A. Niederhauser, Chimia 25, 122 (1971).
- [11] A. Niederhauser & M. Neuenschwander, Helv. 56, 1318 (1973).
- [12] M. Neuenschwander, Arbeitsberichte, Darmstadt (1967), Bern (1968).
- [13] R. Fuks, G. S. D. King & H. G. Viehe, Angew. Chem. 81, 702 (1969).
- [14] A. Roedig, B. Heinrich & D. Kubin, Liebigs Ann. Chem. 754, 35 (1971).
- [15] K. Hafner, persönliche Mitteilung vom 29.7.1969.
- [16] R. B. Woodward & R. A. Olofson, J. Amer. chem. Soc. 83, 1007 (1961).
- [17] O. Mumm, Dissertation, Kiel (1902).
- [18] R. B. Woodward & R. A. Olofson, Tetrahedron Suppl. No. 7, 415 (1966).
- [19] D. J. Woodman, Dissertation, Harvard (1965).
- [20] W. Steglich, G. Höfle, W. König & F. Weygand, Chem. Ber. 101, 308 (1968); W. Steglich, persönliche Mitteilung vom 12.7.1973.
- [21] R. Fuks & H. G. Viehe, Chem. Ber. 103, 564 (1970); M. Neuenschwander, E. Wiedmer & A. Niederhauser, Chimia 25, 334 (1971).
- [22] C. Pascual, J. Meier & W. Simon, Helv. 49, 164 (1966).
- [23] H. E. A. Kramer, Liebigs Ann. Chem. 696, 15 (1966); dort weitere Zitate.
- [24] C. A. Grob, Chimia 25, 87 (1971).
- [25] R. Gompper & G. Seybold, Angew. Chem. 80, 804 (1968); Angew. Chem. 83, 44 (1971); M. Neuenschwander & A. Niederhauser, Chimia 22, 491 (1968); Helv. 53, 519 (1970).
- [26] J. Houben & H. Pohl, Chem. Ber. 40, 1303 (1907).
- ³⁴) Bei langsam verlaufender Umlagerung katalysiert man die Reaktion durch Zugabe eines Körnchens p-Toluolsulfonsäure.